1.Spring AI Alibaba理论概述

1.是什么
什么是 Spring AI Alibaba


SAA公式化一句话表达
Spring AI Alibaba 开源项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案和企业级 AI 应用生态集成。
官网知识出处
SpringAI官网:https://spring.io/projects/spring-ai#learn
Spring AI Alibaba 1.0 GA 正式发布:https://java2ai.com/
https://java2ai.com/blog/spring-ai-alibaba-10-ga-release/?spm=5176.29160081.0.0.2856aa5cww2t9D
阿里云百炼平台:https://bailian.console.aliyun.com/console?tab=model#/model-market
2.能干嘛

Spring AI Alibaba 基于 Spring AI 构建,因此SAA继承了SpringAI 的所有原子能力抽象并在此
基础上扩充丰富了模型、向量存储、记忆、RAG 等核心组件适配,让其能够接入阿里云的 AI 生态。
3.去哪下
Spring AI 官网:https://spring.io/projects/spring-ai#overview
Spring AI Alibaba 官网:https://java2ai.com
Spring AI Alibaba 仓库:https://github.com/alibaba/spring-ai-alibaba
Spring AI Alibaba 官方示例仓库:https://github.com/springaialibaba/spring-ai-alibaba-examples
Spring AI 1.0 GA 文章:https://java2ai.com/blog/spring-ai-100-ga-released
Spring AI 仓库:https://github.com/spring-projects/spring-ai
4.怎么用

5.SpringAI VS SpringAI Alibaba VS LangChain4J


2.永远的HelloWorld
1.前置约定

SpringAI Alibaba 与 SpringAI、SpringBoot版本依赖关系

配置门道和关键点
通过后续讲解配置规则,所有调用均基于 OpenAI协议标准或者SpringAI Aalibaba官方推荐模型服务灵积(DashScope)整合规则,实现一致的接口设计与规范,确保多模型切换的便利性,提供高度可扩展的开发支持
2.阿里云百炼平台入口官网
接入阿里百炼平台的通义模型
https://bailian.console.aliyun.com
大模型调用三件套

小总结

3.IDEA工具中建project父工程

初始总POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>SpringAIAlibaba-Maven父工程POM配置</name>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>21</maven.compiler.source>
<maven.compiler.target>21</maven.compiler.target>
<java.version>21</java.version>
<!-- Spring Boot 新建2025.9-->
<spring-boot.version>3.5.5</spring-boot.version>
<!-- Spring AI 新建2025.9-->
<spring-ai.version>1.0.0</spring-ai.version>
<!-- Spring AI Alibaba 新建2025.9-->
<SpringAIAlibaba.version>1.0.0.2</SpringAIAlibaba.version>
</properties>
<dependencyManagement>
<dependencies>
<!-- Spring Boot -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring-boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<!-- Spring AI Alibaba -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-bom</artifactId>
<version>${SpringAIAlibaba.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<!-- Spring AI -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring-boot.version}</version>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>1.建Module
2.改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-01HelloWorld</artifactId>
<properties>
<maven.compiler.source>21</maven.compiler.source>
<maven.compiler.target>21</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- 引入 springai alibaba DashScope 模型适配的 Starter -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>3.写YML
server.port=8001
#大模型对话中文乱码UTF8编码处理
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-01HelloWorld
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
spring.ai.dashscope.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1
spring.ai.dashscope.chat.options.model=qwen-plus4.主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa01HelloWorldApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa01HelloWorldApplication.class, args);
}
}4.业务类
ApiKey不可以明文需配置进环境变量
配置类SaaLLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyy
* @create 2025-07-22 0:51
*/
@Configuration
public class SaaLLMConfig
{
/*方式1
1.1
yml文件配置:spring.ai.dashscope.api-key=${aliQwen-api}
1.2
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;、
1.3
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder().apiKey(apiKey).build();
}
*/
/**
* 方式2
* yml文件配置:spring.ai.dashscope.api-key=${aliQwen-api}
* @return
*/
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build();
}
}方式1:
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-22 0:51
*/
@Configuration
public class SaaLLMConfig
{
/**
* 方式1:${}
* 持有yml文件配置:spring.ai.dashscope.api-key=${aliQwen-api}
*/
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder().apiKey(apiKey).build();
}
}方式2:
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-22 0:51
*/
@Configuration
public class SaaLLMConfig
{
/**
* 方式2:System.getenv("环境变量")
* 持有yml文件配置:spring.ai.dashscope.api-key=${aliQwen-api}
* @return
*/
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build();
}
}1.对话模型(Chat Model)
ChatModel,文本聊天交互模型


https://java2ai.com/docs/1.0.0.2/tutorials/basics/chat-model/?spm=5176.29160081.0.0.2856aa5ctpxysy
2.controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-22 0:47
*/
@RestController
public class ChatHelloController
{
@Resource //阿里云百炼
private ChatModel dashScopeChatModel;
/**
* http://localhost:8001/hello/dochat
* @param msg
* @return
*/
@GetMapping("/hello/dochat")
public String doChat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
String result = dashScopeChatModel.call(msg);
System.out.println("响应:" + result);
return result;
}
/**
* http://localhost:8001/hello/streamchat
* @param msg
* @return
*/
@GetMapping("/hello/streamchat")
public Flux<String> streamChat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
return dashScopeChatModel.stream(msg);
}
}3.测试
http://localhost:8001/hello/dochat
http://localhost:8001/hello/streamchat
4.切换大模型
server.port=8001
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-01HelloWorld
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
spring.ai.dashscope.chat.options.model=deepseek-v35.和OpenAI协议对比下

3.Ollama私有化部署和对接本地大模型
1.Ollama本地大模型部署
略
2.微服务对接本地大模型
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-02Ollama</artifactId>
<properties>
<maven.compiler.source>21</maven.compiler.source>
<maven.compiler.target>21</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--ollama-->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
<version>1.0.0</version>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8002
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-02Ollama
# ====ollama Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat. model=qwen2.5:latest 主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
* @auther zzyy
* @create 2025-07-22 18:50
*/
@SpringBootApplication
public class Saa02OllamaApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa02OllamaApplication.class,args);
}
}业务类
controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyy
* @create 2025-07-22 18:56
*/
@RestController
public class OllamaController
{
@Resource(name = "oll amaChatModel")
private ChatModel chatModel;
/**
* http://localhost:8002/ollama/chat?msg=你是谁
* @param msg
* @return
*/
@GetMapping("/ollama/chat")
public String chat(@RequestParam(name = "msg") String msg)
{
String result = chatModel.call(msg);
System.out.println("---结果:" + result);
return result;
}
@GetMapping("/ollama/streamchat")
public Flux<String> streamchat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
return chatModel.stream(msg);
}
}或者
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyy
* @create 2025-07-22 18:56
*/
@RestController
public class OllamaController
{
/*@Resource(name = "ollamaChatModel")
private ChatModel chatModel;*/
//方式2
@Resource
@Qualifier("ollamaChatModel")
private ChatModel chatModel;
/**
* http://localhost:8002/ollama/chat?msg=你是谁
* @param msg
* @return
*/
@GetMapping("/ollama/chat")
public String chat(@RequestParam(name = "msg") String msg)
{
String result = chatModel.call(msg);
System.out.println("---结果:" + result);
return result;
}
@GetMapping("/ollama/streamchat")
public Flux<String> streamchat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
return chatModel.stream(msg);
}
}4.ChatClient VS ChatModel
1.问题回顾:
之前的调用都是使用ChatModel进行

认识一个新的接口ChatClient


1.ChatModel
官网
https://java2ai.com/docs/1.0.0.2/tutorials/basics/chat-model/?spm=5176.29160081.0.0.2856aa5cmUTyXC

说明
对话模型(ChatModel)是底层接口,直接与具体大语言模型交互,
提供call()和stream()方法,适合简单大模型交互场景
2.ChatClient
官网
https://java2ai.com/docs/1.0.0.2/tutorials/basics/chat-client/?spm=5176.29160081.0.0.2856aa5cmUTyXC
何为样板代码?
ChatClient对ChatModel吐槽

说明
ChatClient是高级封装,基于ChatModel构建,适合快速构建标准化复杂AI服务,支持同步和流式交互,集成多种高级功能。
编码案例
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-03ChatModelChatClient</artifactId>
<properties>
<maven.compiler.source>21</maven.compiler.source>
<maven.compiler.target>21</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8003
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-03ChatModelChatClient
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa03ChatModelChatClientApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa03ChatModelChatClientApplication.class, args);
}
}业务类第1版
Only ChatModel
新建配置类 SaaLLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyy
* @create 2025-07-22 0:51
*/
@Configuration
public class SaaLLMConfig
{
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder().apiKey(System.getenv("aliQwen-api")).build();
}
}controller
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @auther zzyy
* @create 2025-07-23 18:20
*/
@RestController
public class ChatModelController
{
@Resource //阿里云百炼
private ChatModel dashScopeChatModel;
@GetMapping("/chatmodel/dochat")
public String doChat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
String result = dashScopeChatModel.call(msg);
System.out.println("响应:" + result);
return result;
}
}进一步新增ChatClient



业务类第2版
知识出处
Only ChatClient
新建ChatClientController
package com.atguigu.study.controller;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @auther zzyybs@126.com
* @create 2025-07-23 19:22
* 知识出处:
* https://java2ai.com/docs/1.0.0.2/tutorials/basics/chat-client/?spm=5176.29160081.0.0.2856aa5cmUTyXC#%E5%88%9B%E5%BB%BA-chatclient
*/
@RestController
public class ChatClientController
{
private final ChatClient dashScopechatClient;
/**
* 使用自动配置的 ChatClient.Builder
* @param dashscopeChatModel
*/
public ChatClientController(ChatModel dashscopeChatModel)
{
this.dashScopechatClient = ChatClient.builder(dashscopeChatModel).build();
}
/**
* http://localhost:8003/chatclient/dochat
* @param msg
* @return
*/
@GetMapping("/chatclient/dochat")
public String doChat(@RequestParam(name = "msg",defaultValue = "2加4等于几") String msg)
{
String result = dashScopechatClient.prompt().user(msg).call().content();
System.out.println("响应:" + result);
return result;
}
}ChatModel对ChatClient吐槽:离开我你什么都不是,ChatModel是ChatClient的底层
业务类第3版
ChatModel + ChatClient混合使用
修改配置类SaaLLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyy
* @create 2025-07-22 0:51
*/
@Configuration
public class SaaLLMConfig
{
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build();
}
/**
* 知识出处:
* https://java2ai.com/docs/1.0.0.2/tutorials/basics/chat-client/?spm=5176.29160081.0.0.2856aa5cmUTyXC#%E5%88%9B%E5%BB%BA-chatclient
* @param dashscopeChatModel
* @return
*/
@Bean
public ChatClient chatClient(ChatModel dashscopeChatModel)
{
return ChatClient.builder(dashscopeChatModel).build();
}
}
新建ChatClientControllerV2
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @auther zzyy
* @create 2025-07-23 19:31
*/
@RestController
public class ChatClientControllerV2
{
/**
* chatModel + ChatClient 混合使用
*/
@Resource
private ChatModel chatModel;
@Resource
private ChatClient dashScopechatClientv2;
/**
* http://localhost:8003/chatclientv2/dochat
* @param msg
* @return
*/
@GetMapping("/chatclientv2/dochat")
public String doChat(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
String result = dashScopechatClientv2.prompt().user(msg).call().content();
System.out.println("ChatClient响应:" + result);
return result;
}
/**
* http://localhost:8003/chatmodelv2/dochat
* @param msg
* @return
*/
@GetMapping("/chatmodelv2/dochat")
public String doChat2(@RequestParam(name = "msg",defaultValue = "你是谁") String msg)
{
String result = chatModel.call(msg);
System.out.println("ChatModel响应:" + result);
return result;
}
}小总结
生产推荐:

5.Server-SentEvents(SSE)实现Stream流式输出及多模型共存
1.Response Streaming流式输出
流式输出(StreamingOutput)
是一种逐步返回大模型生成结果的技术,生成一点返回一点,允许服务器将响应内容
分批次实时传输给客户端,而不是等待全部内容生成完毕后再一次性返回。
这种机制能显著提升用户体验,尤其适用于大模型响应较慢的场景(如生成长文本或复杂推理结果)。
SpringAI Alibaba流式输出有两种
- 通过ChatModel实现stream实现流式输出
- 通过ChatClient实现stream实现流式输出
2.SSE(Server-Sent Events)服务器发送事件
Server-Sent:由服务器发送。
Events:事件,指服务器主动推送给客户端的数据或消息
Server-SentEvents(SSE)服务器发送事件实现流式输出
Server-Sent Events (SSE) 是一种允许服务端可以持续推送数据片段(如逐词或逐句)到前端的 Web 技术。通过单向的HTTP长连接,使用一个长期存在的连接,让服务器可以主动将数据”推”给客户端,SSE是轻量级的单向通信协议,适合AI对话这类服务端主导的场景
核心概念
SSE 的核心思想是:客户端发起一个请求,服务器保持这个连接打开并在有新数据时,通过这个连接将数据发送给客户端。这与传统的请求-响应模式(客户端请求一次,服务器响应一次,连接关闭)有本质区别。

总结来说:SSE就是一种让服务器能够主动、持续地向客户端(比如你的网页浏览器)推送数据的技术
SSE适用场景

3.开发步骤
目标:要求同时存在多种大模型产品在系统里共存使用
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-04StreamingOutput</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8004
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-04StreamingOutput
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${a liQwen-api} 主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description 流式输出
*/
@SpringBootApplication
public class Saa04StreamingOutputApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa04StreamingOutputApplication.class, args);
}
}业务类
- 通过ChatModel实现stream实现流式输出
1.配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
}2.controller第1版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description 流式输出
*/
@RestController
public class StreamOutputController
{
//V1 通过ChatModel实现stream实现流式输出
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@GetMapping(value = "/stream/chatflux1")
public Flux<String> chatflux(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return deepseekChatModel.stream(question);
}
@GetMapping(value = "/stream/chatflux2")
public Flux<String> chatflux2(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return qwenChatModel.stream(question);
}
}- 通过ChatClient实现stream实现流式输出
1.配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
@Bean(name = "deepseekChatClient")
public ChatClient deepseekChatClient(@Qualifier("deepseek") ChatModel deepSeek)
{
return ChatClient.builder(deepSeek)
.defaultOptions(ChatOptions.builder()
.model(DEEPSEEK_MODEL)
.build())
.build();
}
@Bean(name = "qwenChatClient")
public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen)
{
return ChatClient.builder(qwen)
.defaultOptions(ChatOptions.builder()
.model(QWEN_MODEL)
.build())
.build();
}
}2.controller第2版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description 流式输出
*/
@RestController
public class StreamOutputController
{
//V1 通过ChatModel实现stream实现流式输出
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
//V2 通过ChatClient实现stream实现流式输出
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@GetMapping(value = "/stream/chatflux1")
public Flux<String> chatflux(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return deepseekChatModel.stream(question);
}
@GetMapping(value = "/stream/chatflux2")
public Flux<String> chatflux2(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return qwenChatModel.stream(question);
}
@GetMapping(value = "/stream/chatflux3")
public Flux<String> chatflux3(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return deepseekChatClient.prompt(question).stream().content();
}
@GetMapping(value = "/stream/chatflux4")
public Flux<String> chatflux4(@RequestParam(name = "question",defaultValue = "你是谁") String question)
{
return qwenChatClient.prompt(question).stream().content();
}
}新增前端代码
效果:

SSE
index.html
<!DOCTYPE html>
<html>
<head>
<title>SSE流式chat</title>
<style>
body {
font-family: Arial, sans-serif;
background-color: #f4f4f4;
margin: 0;
padding: 20px;
}
#messageInput {
width: 90%;
padding: 10px;
font-size: 16px;
border: 1px solid #ccc;
border-radius: 4px;
margin-bottom: 10px;
}
button {
padding: 10px 20px;
font-size: 16px;
background-color: #007bff;
color: white;
border: none;
border-radius: 4px;
cursor: pointer;
}
button:hover {
background-color: #0056b3;
}
#messages {
margin-top: 20px;
padding: 15px;
background-color: #f9f9f9;
border: 1px solid #ddd;
border-radius: 8px;
max-height: 300px;
overflow-y: auto;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
#messages div {
padding: 8px 0;
border-bottom: 1px solid #eee;
font-size: 14px;
color: #333;
}
#messages div:last-child {
border-bottom: none;
}
</style>
</head>
<body>
<textarea id="messageInput" rows="4" cols="50" placeholder="请输入你的问题..."></textarea><br>
<button onclick="sendMsg()">发送提问</button>
<div id="messages"></div>
<script>
function sendMsg() {
// 获取用户输入的消息
const message = document.getElementById('messageInput').value;
if (message == "") return false;
//1 客户端使用 JavaScript 的 EventSource 对象连接到服务器上的一个特定端点(URL)
const eventSource = new EventSource('stream/chatflux2?question=' + message);
//2 监听消息事件
eventSource.onmessage = function (event) {
// 获取流式返回的数据
const data = event.data;
// 将接收到的数据展示到页面上
const messagesDiv = document.getElementById('messages');
messagesDiv.innerHTML += event.data;
};
//3 监听错误事件
eventSource.onerror = function (error) {
console.error('EventSource 发生错误:', error);
eventSource.close(); // 关闭连接
};
}
</script>
</body>
</html>测试:http://localhost:8004/index.html
6.提示词Prompt
1.DeepSeek提示词样例
https://api-docs.deepseek.com/zh-cn/prompt-library

2.是什么
官网
https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a

先从最简单的API调用说起


可以近似的理解
Prompt > Message > String简单的字符串

再从源码Prompt说起
1.String
最初的Prompt只是简单的文本字符串提问
2.Message

enum MessageType

上述也称为
Prompt 中的四大角色(Role)
3.Prompt


可以近似的理解
Prompt > Message > String 简单的文本字符串提问
3.Prompt中的四大角色(Role)
总体概述

源码说明

4大角色:
system

设定AI行为边界/角色/定位。指导AI的行为和响应方式,设置AI如何解释和回复输入的
user

用户原始提问输入。代表用户的输入他们向AI提出的问题、命令或陈述。
assistant

- AI返回的响应信息,定义为”助手角色”消息。用它可以确保上下文能够连贯的交互。
- 记忆对话,积累回答

tool

桥接外部服务,可以进行函数调用如,支付/数据查询等操作,类似调用第3方util工具类,后面章节详细介绍
总结

4.开发步骤
1.改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.zzyy.stduy</groupId>
<artifactId>SpringAI-zyfanV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>springAI-05chat-Prompt</artifactId>
<properties>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-openai-->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.34</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>17</source>
<target>17</target>
</configuration>
</plugin>
</plugins>
</build>
</project>2.写YML
server.port=8005
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-05Prompt
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}3.主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 20:56
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a
*/
@SpringBootApplication
public class Saa05PromptApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa05PromptApplication.class,args);
}
}4.业务类
配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
@Bean(name = "deepseekChatClient")
public ChatClient deepseekChatClient(@Qualifier("deepseek") ChatModel deepSeek)
{
return ChatClient.builder(deepSeek)
.defaultOptions(ChatOptions.builder()
.model(DEEPSEEK_MODEL)
.build())
.build();
}
@Bean(name = "qwenChatClient")
public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen)
{
return ChatClient.builder(qwen)
.defaultOptions(ChatOptions.builder()
.model(QWEN_MODEL)
.build())
.build();
}
}controller第1版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 21:25
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a
*/
@RestController
public class PromptController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
// http://localhost:8005/prompt/chat?question=火锅介绍下
@GetMapping("/prompt/chat")
public Flux<String> chat(String question)
{
return deepseekChatClient.prompt()
// AI 能力边界
.system("你是一个法律助手,只回答法律问题,其它问题回复,我只能回答法律相关问题,其它无可奉告")
.user(question)
.stream()
.content();
}
}通过ChatClient实现


测试

controller第2版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 21:25
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a
*/
@RestController
public class PromptController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
// http://localhost:8005/prompt/chat?question=火锅介绍下
@GetMapping("/prompt/chat")
public Flux<String> chat(String question)
{
return deepseekChatClient.prompt()
// AI 能力边界
.system("你是一个法律助手,只回答法律问题,其它问题回复,我只能回答法律相关问题,其它无可奉告")
.user(question)
.stream()
.content();
}
@GetMapping("/prompt/chat2")
public Flux<ChatResponse> chat2(String question)
{
// 用户消息
UserMessage userMessage = new UserMessage(question);
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手,每个故事控制在300字以内");
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt);
}
@GetMapping("/prompt/chat3")
public Flux<String> chat3(String question)
{
// 用户消息
UserMessage userMessage = new UserMessage(question);
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手,每个故事控制在300字以内");
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt)
.map(response -> response.getResults().get(0).getOutput().getText());
}
}controller第3版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 21:25
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a
*/
@RestController
public class PromptController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
// http://localhost:8005/prompt/chat?question=火锅介绍下
@GetMapping("/prompt/chat")
public Flux<String> chat(String question)
{
return deepseekChatClient.prompt()
// AI 能力边界
.system("你是一个法律助手,只回答法律问题,其它问题回复,我只能回答法律相关问题,其它无可奉告")
.user(question)
.stream()
.content();
}
@GetMapping("/prompt/chat2")
public Flux<ChatResponse> chat2(String question)
{
// 用户消息
UserMessage userMessage = new UserMessage(question);
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手,每个故事控制在300字以内");
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt);
}
@GetMapping("/prompt/chat3")
public Flux<String> chat3(String question)
{
// 用户消息
UserMessage userMessage = new UserMessage(question);
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手,每个故事控制在300字以内");
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt)
.map(response -> response.getResults().get(0).getOutput().getText());
}
@GetMapping("/prompt/chat4")
public String chat4(String question)
{
AssistantMessage assistantMessage = deepseekChatClient.prompt()
.user(question)
.call()
.chatResponse()
.getResult()
.getOutput();
return assistantMessage.getText();
}
}
controller第4版
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.AssistantMessage;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.ToolResponseMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import java.util.List;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 21:25
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/prompt/?spm=5176.29160081.0.0.2856aa5cdeol7a
*/
@RestController
public class PromptController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
// http://localhost:8005/prompt/chat?question=火锅介绍下
@GetMapping("/prompt/chat")
public Flux<String> chat(String question)
{
return deepseekChatClient.prompt()
// AI 能力边界
.system("你是一个法律助手,只回答法律问题,其它问题回复,我只能回答法律相关问题,其它无可奉告")
.user(question)
.stream()
.content();
}
/**
* http://localhost:8005/prompt/chat2?question=葫芦娃
* @param question
* @return
*/
@GetMapping("/prompt/chat2")
public Flux<ChatResponse> chat2(String question)
{
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手,每个故事控制在300字以内");
// 用户消息
UserMessage userMessage = new UserMessage(question);
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt);
}
/**
* http://localhost:8005/prompt/chat3?question=葫芦娃
* @param question
* @return
*/
@GetMapping("/prompt/chat3")
public Flux<String> chat3(String question)
{
// 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个讲故事的助手," +
"每个故事控制在600字以内且以HTML格式返回");
// 用户消息
UserMessage userMessage = new UserMessage(question);
Prompt prompt = new Prompt(userMessage, systemMessage);
return deepseekChatModel.stream(prompt)
.map(response -> response.getResults().get(0).getOutput().getText());
}
/**
* http://localhost:8005/prompt/chat4?question=葫芦娃
* @param question
* @return
*/
@GetMapping("/prompt/chat4")
public String chat4(String question)
{
AssistantMessage assistantMessage = deepseekChatClient.prompt()
.user(question)
.call()
.chatResponse()
.getResult()
.getOutput();
return assistantMessage.getText();
}
/**
* http://localhost:8005/prompt/chat5?city=北京
* 近似理解Tool后面章节讲解......
* @param city
* @return
*/
@GetMapping("/prompt/chat5")
public String chat5(String city)
{
String answer = deepseekChatClient.prompt()
.user(city + "未来3天天气情况如何?")
.call()
.chatResponse()
.getResult()
.getOutput()
.getText();
ToolResponseMessage toolResponseMessage =
new ToolResponseMessage(
List.of(new ToolResponseMessage.ToolResponse("1","获得天气",city)
)
);
String toolResponse = toolResponseMessage.getText();
String result = answer + toolResponse;
return result;
}
}

测试效果

5.小总结

7.提示词Prompt Template
1.Prompt演化历程
- 简单纯字符串提问问题
- 最初的Prompt只是简单的文本字符串。
- 多角色消息
- 将消息分为不同角色(如用户、助手、系统等),设置功能边界,增强交互的复杂性和上下文感知能力
- springai vs langchain4j vs spring ai alibaba



- 占位符(Prompt Template)
- 引入占位符(如{占位符变量名})以动态插入内容。
2.提示词模板是什么

知识出处
模板
- 入职邀请函模板
主题:欢迎加入!给 [候选人姓名] 的入职邀请函
嗨 [候选人姓名],
重磅好消息!经过团队的一致认可,我们真诚地邀请你加入我司,成为我们的 [职位名称]!
从面试中的沟通,我们深深感受到了你的专业能力和对工作的热情,相信你的加入一定会让我们的团队更加出色。
以下是你的入职详情,请查收:
职位: [职位名称]
团队: [部门/团队名称]
工作地点: [公司地址]
入职时间: [年]月[日](星期[几]),记得那天 [时间] 来找我们哦!
薪资待遇:
月薪:[金额] 元(税前)
试用期:[时长],薪资为转正后的 [百分比]%
五险一金:齐全!公司会为你全额缴纳。
其他福利,如:零食饮料无限供应、年度旅游、弹性工作时间等
在第一天,你需要准备:
身份证、学历学位证、离职证明的原件和复印件
一张开心的笑脸!:)
为了能顺利迎接你,请在 [日期] 前回复这封邮件告诉我们“我愿意!”
如果你有任何疑问,别客气,随时找我聊(联系人:[HR姓名],电话:[电话])。
非常期待与你见面,一起做些酷的事情!
Best regards,
[你的名字/HR名字]
[公司名称] 团队
[日期]- 短信模板
- 邮件模板
PromptTemplate
3.开发步骤
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-06PromptTemplate</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8006
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-06PromptTemplate
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa06PromptTemplateApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa06PromptTemplateApplication.class, args);
}
}改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-06PromptTemplate</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8006
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-06PromptTemplate
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa06PromptTemplateApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa06PromptTemplateApplication.class, args);
}
}业务类
配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
@Bean(name = "deepseekChatClient")
public ChatClient deepseekChatClient(@Qualifier("deepseek") ChatModel deepSeek)
{
return ChatClient.builder(deepSeek)
.defaultOptions(ChatOptions.builder()
.model(DEEPSEEK_MODEL)
.build())
.build();
}
@Bean(name = "qwenChatClient")
public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen)
{
return ChatClient.builder(qwen)
.defaultOptions(ChatOptions.builder()
.model(QWEN_MODEL)
.build())
.build();
}
}1.PromptTemplate基本使用
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
import java.util.Map;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 16:25
* @Description TODO
*/
@RestController
public class PromptTemplateController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
/**
* @Description: PromptTemplate基本使用,使用占位符设置模版 PromptTemplate
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat?topic=java&output_format=html&wordCount=200
*/
@GetMapping("/prompttemplate/chat")
public Flux<String> chat(String topic, String output_format, String wordCount)
{
PromptTemplate promptTemplate = new PromptTemplate("" +
"讲一个关于{topic}的故事" +
"并以{output_format}格式输出," +
"字数在{wordCount}左右");
// PromptTempate -> Prompt
Prompt prompt = promptTemplate.create(Map.of(
"topic", topic,
"output_format",output_format,
"wordCount",wordCount));
return deepseekChatClient.prompt(prompt).stream().content();
}
}2.PromptTemplate读取模版文件实现模版功能
讲一个关于{topic}的故事,并以{output_format}格式输出。

代码:
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
import java.util.Map;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 16:25
* @Description TODO
*/
@RestController
public class PromptTemplateController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@Value("classpath:/prompttemplate/atguigu-template.txt")
private org.springframework.core.io.Resource userTemplate;
/**
* @Description: PromptTemplate基本使用,使用占位符设置模版 PromptTemplate
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat?topic=java&output_format=html&wordCount=200
*/
@GetMapping("/prompttemplate/chat")
public Flux<String> chat(String topic, String output_format, String wordCount)
{
PromptTemplate promptTemplate = new PromptTemplate("" +
"讲一个关于{topic}的故事" +
"并以{output_format}格式输出," +
"字数在{wordCount}左右");
// PromptTempate -> Prompt
Prompt prompt = promptTemplate.create(Map.of(
"topic", topic,
"output_format",output_format,
"wordCount",wordCount));
return deepseekChatClient.prompt(prompt).stream().content();
}
/**
* @Description: PromptTemplate读取模版文件实现模版功能
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat2?topic=java&output_format=html
*/
@GetMapping("/prompttemplate/chat2")
public String chat2(String topic,String output_format)
{
PromptTemplate promptTemplate = new PromptTemplate(userTemplate);
Prompt prompt = promptTemplate.create(Map.of("topic", topic, "output_format", output_format));
return deepseekChatClient.prompt(prompt).call().content();
}
}3.PromptTemplate多角色设定
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
import java.util.Map;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 16:25
* @Description TODO
*/
@RestController
public class PromptTemplateController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@Value("classpath:/prompttemplate/atguigu-template.txt")
private org.springframework.core.io.Resource userTemplate;
/**
* @Description: PromptTemplate基本使用,使用占位符设置模版 PromptTemplate
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat?topic=java&output_format=html&wordCount=200
*/
@GetMapping("/prompttemplate/chat")
public Flux<String> chat(String topic, String output_format, String wordCount)
{
PromptTemplate promptTemplate = new PromptTemplate("" +
"讲一个关于{topic}的故事" +
"并以{output_format}格式输出," +
"字数在{wordCount}左右");
// PromptTempate -> Prompt
Prompt prompt = promptTemplate.create(Map.of(
"topic", topic,
"output_format",output_format,
"wordCount",wordCount));
return deepseekChatClient.prompt(prompt).stream().content();
}
/**
* @Description: PromptTemplate读取模版文件实现模版功能
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat2?topic=java&output_format=html
*/
@GetMapping("/prompttemplate/chat2")
public String chat2(String topic,String output_format)
{
PromptTemplate promptTemplate = new PromptTemplate(userTemplate);
Prompt prompt = promptTemplate.create(Map.of("topic", topic, "output_format", output_format));
return deepseekChatClient.prompt(prompt).call().content();
}
/**
* @Auther: zzyybs@126.com
* @Description:
* 系统消息(SystemMessage):设定AI的行为规则和功能边界(xxx助手/什么格式返回/字数控制多少)。
* 用户消息(UserMessage):用户的提问/主题
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=知识产权法
*
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=夫妻肺片
*/
@GetMapping("/prompttemplate/chat3")
public String chat3(String sysTopic, String userTopic)
{
// 1.SystemPromptTemplate
SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate("你是{systemTopic}助手,只回答{systemTopic}其它无可奉告,以HTML格式的结果。");
Message sysMessage = systemPromptTemplate.createMessage(Map.of("systemTopic", sysTopic));
// 2.PromptTemplate
PromptTemplate userPromptTemplate = new PromptTemplate("解释一下{userTopic}");
Message userMessage = userPromptTemplate.createMessage(Map.of("userTopic", userTopic));
// 3.组合【关键】 多个 Message -> Prompt
Prompt prompt = new Prompt(List.of(sysMessage, userMessage));
// 4.调用 LLM
return deepseekChatClient.prompt(prompt).call().content();
}
}测试

4.PromptTemplate人物设定
- 通过ChatModel实现
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
import java.util.Map;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 16:25
* @Description TODO
*/
@RestController
public class PromptTemplateController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@Value("classpath:/prompttemplate/atguigu-template.txt")
private org.springframework.core.io.Resource userTemplate;
/**
* @Description: PromptTemplate基本使用,使用占位符设置模版 PromptTemplate
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat?topic=java&output_format=html&wordCount=200
*/
@GetMapping("/prompttemplate/chat")
public Flux<String> chat(String topic, String output_format, String wordCount)
{
PromptTemplate promptTemplate = new PromptTemplate("" +
"讲一个关于{topic}的故事" +
"并以{output_format}格式输出," +
"字数在{wordCount}左右");
// PromptTempate -> Prompt
Prompt prompt = promptTemplate.create(Map.of(
"topic", topic,
"output_format",output_format,
"wordCount",wordCount));
return deepseekChatClient.prompt(prompt).stream().content();
}
/**
* @Description: PromptTemplate读取模版文件实现模版功能
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat2?topic=java&output_format=html
*/
@GetMapping("/prompttemplate/chat2")
public String chat2(String topic,String output_format)
{
PromptTemplate promptTemplate = new PromptTemplate(userTemplate);
Prompt prompt = promptTemplate.create(Map.of("topic", topic, "output_format", output_format));
return deepseekChatClient.prompt(prompt).call().content();
}
/**
* @Auther: zzyybs@126.com
* @Description:
* 系统消息(SystemMessage):设定AI的行为规则和功能边界(xxx助手/什么格式返回/字数控制多少)。
* 用户消息(UserMessage):用户的提问/主题
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=知识产权法
*
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=夫妻肺片
*/
@GetMapping("/prompttemplate/chat3")
public String chat3(String sysTopic, String userTopic)
{
// 1.SystemPromptTemplate
SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate("你是{systemTopic}助手,只回答{systemTopic}其它无可奉告,以HTML格式的结果。");
Message sysMessage = systemPromptTemplate.createMessage(Map.of("systemTopic", sysTopic));
// 2.PromptTemplate
PromptTemplate userPromptTemplate = new PromptTemplate("解释一下{userTopic}");
Message userMessage = userPromptTemplate.createMessage(Map.of("userTopic", userTopic));
// 3.组合【关键】 多个 Message -> Prompt
Prompt prompt = new Prompt(List.of(sysMessage, userMessage));
// 4.调用 LLM
return deepseekChatClient.prompt(prompt).call().content();
}
/**
* @Description: 人物角色设定,通过SystemMessage来实现人物设定,本案例用ChatModel实现
* 设定AI为”医疗专家”时,仅回答医学相关问题
* 设定AI为编程助手”时,专注于技术问题解答
* @Auther: zzyybs@126.com
* http://localhost:8006/prompttemplate/chat4?question=牡丹花
*/
@GetMapping("/prompttemplate/chat4")
public String chat4(String question)
{
//1 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个Java编程助手,拒绝回答非技术问题。");
//2 用户消息
UserMessage userMessage = new UserMessage(question);
//3 系统消息+用户消息=完整提示词
//Prompt prompt = new Prompt(systemMessage, userMessage);
Prompt prompt = new Prompt(List.of(systemMessage, userMessage));
//4 调用LLM
String result = deepseekChatModel.call(prompt).getResult().getOutput().getText();
System.out.println(result);
return result;
}
}- 通过ChatClient实现
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.chat.prompt.PromptTemplate;
import org.springframework.ai.chat.prompt.SystemPromptTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import org.springframework.beans.factory.annotation.Value;
import java.util.List;
import java.util.Map;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 16:25
* @Description TODO
*/
@RestController
public class PromptTemplateController
{
@Resource(name = "deepseek")
private ChatModel deepseekChatModel;
@Resource(name = "qwen")
private ChatModel qwenChatModel;
@Resource(name = "deepseekChatClient")
private ChatClient deepseekChatClient;
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@Value("classpath:/prompttemplate/atguigu-template.txt")
private org.springframework.core.io.Resource userTemplate;
/**
* @Description: PromptTemplate基本使用,使用占位符设置模版 PromptTemplate
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat?topic=java&output_format=html&wordCount=200
*/
@GetMapping("/prompttemplate/chat")
public Flux<String> chat(String topic, String output_format, String wordCount)
{
PromptTemplate promptTemplate = new PromptTemplate("" +
"讲一个关于{topic}的故事" +
"并以{output_format}格式输出," +
"字数在{wordCount}左右");
// PromptTempate -> Prompt
Prompt prompt = promptTemplate.create(Map.of(
"topic", topic,
"output_format",output_format,
"wordCount",wordCount));
return deepseekChatClient.prompt(prompt).stream().content();
}
/**
* @Description: PromptTemplate读取模版文件实现模版功能
* @Auther: zzyybs@126.com
* 测试地址
* http://localhost:8006/prompttemplate/chat2?topic=java&output_format=html
*/
@GetMapping("/prompttemplate/chat2")
public String chat2(String topic,String output_format)
{
PromptTemplate promptTemplate = new PromptTemplate(userTemplate);
Prompt prompt = promptTemplate.create(Map.of("topic", topic, "output_format", output_format));
return deepseekChatClient.prompt(prompt).call().content();
}
/**
* @Auther: zzyybs@126.com
* @Description:
* 系统消息(SystemMessage):设定AI的行为规则和功能边界(xxx助手/什么格式返回/字数控制多少)。
* 用户消息(UserMessage):用户的提问/主题
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=知识产权法
*
* http://localhost:8006/prompttemplate/chat3?sysTopic=法律&userTopic=夫妻肺片
*/
@GetMapping("/prompttemplate/chat3")
public String chat3(String sysTopic, String userTopic)
{
// 1.SystemPromptTemplate
SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate("你是{systemTopic}助手,只回答{systemTopic}其它无可奉告,以HTML格式的结果。");
Message sysMessage = systemPromptTemplate.createMessage(Map.of("systemTopic", sysTopic));
// 2.PromptTemplate
PromptTemplate userPromptTemplate = new PromptTemplate("解释一下{userTopic}");
Message userMessage = userPromptTemplate.createMessage(Map.of("userTopic", userTopic));
// 3.组合【关键】 多个 Message -> Prompt
Prompt prompt = new Prompt(List.of(sysMessage, userMessage));
// 4.调用 LLM
return deepseekChatClient.prompt(prompt).call().content();
}
/**
* @Description: 人物角色设定,通过SystemMessage来实现人物设定,本案例用ChatModel实现
* 设定AI为”医疗专家”时,仅回答医学相关问题
* 设定AI为编程助手”时,专注于技术问题解答
* @Auther: zzyybs@126.com
* http://localhost:8006/prompttemplate/chat4?question=牡丹花
*/
@GetMapping("/prompttemplate/chat4")
public String chat4(String question)
{
//1 系统消息
SystemMessage systemMessage = new SystemMessage("你是一个Java编程助手,拒绝回答非技术问题。");
//2 用户消息
UserMessage userMessage = new UserMessage(question);
//3 系统消息+用户消息=完整提示词
//Prompt prompt = new Prompt(systemMessage, userMessage);
Prompt prompt = new Prompt(List.of(systemMessage, userMessage));
//4 调用LLM
String result = deepseekChatModel.call(prompt).getResult().getOutput().getText();
System.out.println(result);
return result;
}
/**
* @Description: 人物角色设定,通过SystemMessage来实现人物设定,本案例用ChatClient实现
* 设定AI为”医疗专家”时,仅回答医学相关问题
* 设定AI为编程助手”时,专注于技术问题解答
* @Auther: zzyybs@126.com
* http://localhost:8006/prompttemplate/chat5?question=火锅
*/
@GetMapping("/prompttemplate/chat5")
public Flux<String> chat5(String question)
{
return deepseekChatClient.prompt()
.system("你是一个Java编程助手,拒绝回答非技术问题。")
.user(question)
.stream()
.content();
}
}8.格式化输出(Structured Output)
1.是什么

2.开发步骤
目标:假设我们期望将模型输出转换为Record记录类结构体,不再是传统的String
新建子模块Module SAA-07StructuredOutput
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-07StructuredOutput</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8006
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-06PromptTemplate
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 17:16
* @Description 知识出处,https://java2ai.com/docs/1.0.0.2/tutorials/basics/structured-output/?spm=5176.29160081.0.0.2856aa5cPJ9Ha8
*/
@SpringBootApplication
public class Saa07StructuredOutputApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa07StructuredOutputApplication.class, args);
}
}业务类
配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
@Bean(name = "deepseekChatClient")
public ChatClient deepseekChatClient(@Qualifier("deepseek") ChatModel deepSeek)
{
return ChatClient.builder(deepSeek)
.defaultOptions(ChatOptions.builder()
.model(DEEPSEEK_MODEL)
.build())
.build();
}
@Bean(name = "qwenChatClient")
public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen)
{
return ChatClient.builder(qwen)
.defaultOptions(ChatOptions.builder()
.model(QWEN_MODEL)
.build())
.build();
}
}重点步骤
1.新建记录类StudentRecord
package com.atguigu.study.records;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 17:18
* @Description jdk14后的新特性,记录类替代lombok
*/
public record StudentRecord(String id,String sname,String major,String email) { }2.controllerV1
package com.atguigu.study.controller;
import com.atguigu.study.records.StudentRecord;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.function.Consumer;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 17:16
* @Description TODO
*/
@RestController
public class StructuredOutputController
{
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
/**
* http://localhost:8007/structuredoutput/chat?sname=李四&email=zzyybs@126.com
* @param sname
* @return
*/
@GetMapping("/structuredoutput/chat")
public StudentRecord chat(String sname,String email)
{
return qwenChatClient.prompt()
.user(new Consumer<ChatClient.PromptUserSpec>() {
@Override
public void accept(ChatClient.PromptUserSpec promptUserSpec)
{
promptUserSpec.text("学号1001,我叫{sname},大学专业是计算机科学与技术,邮箱{email}")
.param("sname",sname)
.param("email",email);
}
}).call().entity(StudentRecord.class);
}
}3.controllerV2
package com.atguigu.study.controller;
import com.atguigu.study.records.StudentRecord;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.function.Consumer;
/**
* @auther zzyybs@126.com
* @create 2025-07-26 17:16
* @Description TODO
*/
@RestController
public class StructuredOutputController
{
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
/**
* http://localhost:8007/structuredoutput/chat?sname=李四&email=zzyybs@126.com
* @param sname
* @return
*/
@GetMapping("/structuredoutput/chat")
public StudentRecord chat(String sname,String email)
{
return qwenChatClient.prompt()
.user(new Consumer<ChatClient.PromptUserSpec>() {
@Override
public void accept(ChatClient.PromptUserSpec promptUserSpec)
{
promptUserSpec.text("学号1001,我叫{sname},大学专业是计算机科学与技术,邮箱{email}")
.param("sname",sname)
.param("email",email);
}
}).call().entity(StudentRecord.class);
}
/**
* http://localhost:8007/structuredoutput/chat2?sname=孙伟&email=zzyybs@126.com
* @param sname
* @return
*/
@GetMapping("/structuredoutput/chat2")
public StudentRecord chat2(@RequestParam(name = "sname") String sname,
@RequestParam(name = "email") String email)
{
String stringTemplate = """
学号1002,我叫{sname},大学专业是软件工程,邮箱{email}
""";
return qwenChatClient.prompt()
.user(promptUserSpec -> promptUserSpec.text(stringTemplate)
.param("sname",sname)
.param("email",email))
.call()
.entity(StudentRecord.class);
}
}9.Chat Memory连续对话保存和持久化
1.是什么

记忆对话,积累回答

一句话总结:Spring AI Alibaba中的聊天记忆提供了维护 AI 聊天应用程序的对话上下文和历史的机制
记忆类型

因大模型本身不存储数据,需将历史对话信息一次性提供给它以实现连续对话,不然服务一重启就什么都没了……所以,必须持久化
痛点2个
- 持久化媒介
- 消息对话窗口,聊天记录上限
2.持久化开发步骤
1.业务类
前置知识
- ChatMemoryRepository接口

1.实现SpringAI框架规定的ChatMemoryRepository接口
2.接口ChatMemoryRepository

3.RedisChatMemoryRepository源码

4.编码新建RedisMemoryConfig配置类
package com.atguigu.study.config;
import com.alibaba.cloud.ai.memory.redis.RedisChatMemoryRepository;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-28 18:24
* @Description TODO
*/
@Configuration
public class RedisMemoryConfig
{
@Value("${spring.data.redis.host}")
private String host;
@Value("${spring.data.redis.port}")
private int port;
@Bean
public RedisChatMemoryRepository redisChatMemoryRepository()
{
return RedisChatMemoryRepository.builder()
.host(host)
.port(port)
.build();
}
}- MessageWindowChatMemory 消息窗口聊天记忆

- 顾问(Advisors)MessageChatMemoryAdvisor



配置类SaaLLMConfig

controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.web.bind.annotation.GetMapping;
import static org.springframework.ai.chat.memory.ChatMemory.CONVERSATION_ID;
import org.springframework.web.bind.annotation.RestController;
import java.util.function.Consumer;
/**
* @auther zzyybs@126.com
* @create 2025-07-28 18:40
* @Description TODO
*/
@RestController
public class ChatMemory4RedisController
{
@Resource(name = "qwenChatClient")
private ChatClient qwenChatClient;
@GetMapping("/chatmemory/chat")
public String chat(String msg, String userId)
{
/*return qwenChatClient.prompt(msg).advisors(new Consumer<ChatClient.AdvisorSpec>()
{
@Override
public void accept(ChatClient.AdvisorSpec advisorSpec)
{
advisorSpec.param(CONVERSATION_ID, cid);
}
}).call().content();*/
return qwenChatClient.prompt(msg)
.advisors(advisorSpec -> advisorSpec.param(CONVERSATION_ID, userId))
.call()
.content();
}
}2.测试
http://localhost:8008/chatmemory/chat?msg=2加5等于多少&userId=7

10.文生图
1.阿里百炼文生图

2.开发步骤
通义万相-文生图V2版API参考
新建子模块Module
SAA-09Text2image
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-09Text2image</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8009
# 设置响应的字符编码
server.servlet.encoding.charset=utf-8
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
spring.application.name=SAA-09Text2image
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa09Text2imageApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa09Text2imageApplication.class, args);
}
}业务类
controller
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.audio.DashScopeSpeechSynthesisModel;
import com.alibaba.cloud.ai.dashscope.audio.DashScopeSpeechSynthesisOptions;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisModel;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisOptions;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisPrompt;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisResponse;
import com.alibaba.cloud.ai.dashscope.image.DashScopeImageOptions;
import jakarta.annotation.Resource;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.image.ImagePrompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.io.File;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.util.UUID;
/**
* @auther zzyybs@126.com
* @create 2025-07-28 20:10
* @Description 知识出处
* https://help.aliyun.com/zh/model-studio/text-to-image?spm=a2c4g.11186623.help-menu-2400256.d_0_5_0.1a457d9dv6o7Kc&accounttraceid=6ec3bf09599f424a91a2a88b27b31570nrdd
*/
@RestController
public class Text2ImageController
{
// img model
public static final String IMAGE_MODEL = "wanx2.1-t2i-turbo";
@Resource
private ImageModel imageModel;
@GetMapping(value = "/t2i/image")
public String image(@RequestParam(name = "prompt",defaultValue = "刺猬") String prompt)
{
return imageModel.call(
new ImagePrompt(prompt, DashScopeImageOptions.builder().withModel(IMAGE_MODEL).build())
)
.getResult()
.getOutput()
.getUrl();
}
}11.文生音
1.阿里百炼文生音
语音合成-CosyVoice
语音合成CosyVoice Java SDK
https://help.aliyun.com/zh/model-studio/cosyvoice-java-sdk?spm=a2c4g.11186623.0.0.77e07447jgP4N0
SpeechSynthesizer类提供了语音合成的关键接口
同步提交语音合成任务,直接获取完整结果

提交文本后,服务端立即处理并返回完整的语音合成结果。整个过程是阻塞式的,客户端需要等待服务端完成处理后才能继续下一步操作。适合短文本语音合成场景
阿里内置接口一览

DashScopeSpeechSynthesisOptions
SpeechSynthesisParam的链式方法配置模型、音色等参数

https://help.aliyun.com/zh/model-studio/cosyvoice-java-sdk#2e9a9a89aclc8
代码:

2.开发步骤
新建子模块Module
SAA-10Text2voice
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-10Text2voice</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8010
# 设置响应的字符编码
server.servlet.encoding.charset=utf-8
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
spring.application.name=SAA-10Text2voice
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa10Text2voiceApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa10Text2voiceApplication.class, args);
}
}业务类
音色列表配置

https://help.aliyun.com/zh/model-studio/cosyvoice-java-sdk#722dd7ca66a6x
controller
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.audio.DashScopeSpeechSynthesisOptions;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisModel;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisPrompt;
import com.alibaba.cloud.ai.dashscope.audio.synthesis.SpeechSynthesisResponse;
import jakarta.annotation.Resource;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.util.UUID;
/**
* @auther zzyybs@126.com
* @create 2025-07-29 18:35
* @Description TODO
*/
@RestController
public class Text2VoiceController
{
@Resource
private SpeechSynthesisModel speechSynthesisModel;
// voice model
public static final String BAILIAN_VOICE_MODEL = "cosyvoice-v2";
// voice timber 音色列表:https://help.aliyun.com/zh/model-studio/cosyvoice-java-sdk#722dd7ca66a6x
public static final String BAILIAN_VOICE_TIMBER = "longyingcui";//龙应催
/**
* http://localhost:8010/t2v/voice
* @param msg
* @return
*/
@GetMapping("/t2v/voice")
public String voice(@RequestParam(name = "msg",defaultValue = "温馨提醒,支付宝到账100元请注意查收") String msg)
{
String filePath = "d:\\" + UUID.randomUUID() + ".mp3";
//1 语音参数设置
DashScopeSpeechSynthesisOptions options = DashScopeSpeechSynthesisOptions.builder()
.model(BAILIAN_VOICE_MODEL)
.voice(BAILIAN_VOICE_TIMBER)
.build();
//2 调用大模型语音生成对象
SpeechSynthesisResponse response = speechSynthesisModel.call(new SpeechSynthesisPrompt(msg, options));
//3 字节流语音转换
ByteBuffer byteBuffer = response.getResult().getOutput().getAudio();
//4 文件生成
try (FileOutputStream fileOutputStream = new FileOutputStream(filePath))
{
fileOutputStream.write(byteBuffer.array());
} catch (Exception e) {
System.out.println(e.getMessage());
}
//5 生成路径OK
return filePath;
}
}12.向量化和向量数据库
1.向量

2.文本向量化
1.是什么

官网-嵌入模型 (Embedding Model)
https://java2ai.com/docs/1.0.0.2/tutorials/basics/embedding/?spm=5176.29160081.0.0.2856aa5cXggpMJ

案例1


案列2

嵌入模型小总结

3.向量数据库
1.向量存储是什么
官网-向量存储(Vector Store)
https://java2ai.com/docs/1.0.0.2/tutorials/basics/vectorstore/?spm=5176.29160081.0.0.2856aa5cXggpMJ

一句话:一种专门用于存储、管理和检索向量数据(即高维数值数组)的数据库系统。
其核心功能是通过高效的索引结构和相似性计算算法,支持大规模向量数据的快速查询与分析,向量数据库维度越高,查询精准度也越高,查询效果也越好。
下方是LangChain4J支持的向量数据库List清单
https://docs.langchain4j.dev/integrations/embedding-stores
下方是SpringAI支持的向量数据库List清单
https://docs.spring.io/spring-ai/reference/api/vectordbs.html
2.向量数据库能干嘛
将文本、图像和视频转换为称为向量(Vectors)的浮点数数组在 VectorStore中,查询与传统关系数据库不同。它们执行相似性搜索,而不是精确匹配。当给定一个向量作为查询时,VectorStore 返回与查询向量“相似”的向量
指征特点
- 捕捉复杂的词汇关系(如语义相似性、同义词、多义词)
- 向量嵌入为检索增强生成 (RAG) 应用程序提供支持
小总结
- 将文本映射到高维空间中的点,使语义相似的文本在这个空间中距离较近。
- 例如,“肯德基”和”麦当劳”的向量可能会比”肯德基”和”新疆大盘鸡”的向量更接近
4.开发步骤
1.用redisStack作为向量存储
https://docs.spring.io/spring-ai/reference/api/vectordbs/redis.html
RedisStack是什么


RedisStack核心组件
- RediSearch:提供全文搜索能力,支持复杂的文本搜索、聚合和过滤,以及向量数据的存储和检索
- RedisJSON:原生支持JSON数据的存储、索引I和查询,可高效存储和操作嵌套的JSON文档。
- RedisGraph:支持图数据模型,使用Cypher查询语言进行图遍历查询。
- RedisBloom:支持 Bloom、Cuckoo、Count-Min Sketch等概率数据结构。
一句话(重要)
RedisStack = 原生Redis + 搜索 + 图 + 时间序列 + JSON + 概率结构 + 可视化工具 + 开发框架支持
RedisStack安装
docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server基础api

2.业务类
知识出处
https://docs.spring.io/spring-ai/reference/api/vectordbs.html
controller 文本向量化 向量化存储 向量化查询
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingOptions;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.document.Document;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.embedding.EmbeddingRequest;
import org.springframework.ai.embedding.EmbeddingResponse;
import org.springframework.ai.vectorstore.SearchRequest;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import java.util.Arrays;
import java.util.List;
/**
* @auther zzyybs@126.com
* @create 2025-07-29 19:54
* @Description TODO
*/
@RestController
@Slf4j
public class Embed2VectorController
{
@Resource
private EmbeddingModel embeddingModel;
@Resource
private VectorStore vectorStore;
/**
* 文本向量化
* http://localhost:8011/text2embed?msg=射雕英雄传
*
* @param msg
* @return
*/
@GetMapping("/text2embed")
public EmbeddingResponse text2Embed(String msg)
{
//EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of(msg), null));
EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of(msg),
DashScopeEmbeddingOptions.builder().withModel("text-embedding-v3").build()));
System.out.println(Arrays.toString(embeddingResponse.getResult().getOutput()));
return embeddingResponse;
}
@GetMapping("/embed2vector/add")
public void add()
{
List<Document> documents = List.of(
new Document("i study LLM"),
new Document("i love java")
);
vectorStore.add(documents);
}
@GetMapping("/embed2vector/get")
public List getAll(@RequestParam(name = "msg") String msg)
{
SearchRequest searchRequest = SearchRequest.builder()
.query(msg)
.topK(2)
.build();
List<Document> list = vectorStore.similaritySearch(searchRequest);
System.out.println(list);
return list;
}
}测试
- http://localhost:8011/text2embed?msg=射雕英雄传
- http://localhost:8011/embed2vector/get?msg=LLM

3.实现原理

13.RAG(Retrieval Augmented Generation)
1.前言
RAG (Retrieval-Augmented Generation)检索增强生成
需求
- AI智能运维助手,通过提供的错误编码,给出异常解释辅助运维人员更好的定位问题和维护系统
- SpringAI+阿里百炼嵌入模型text-embedding-v3+向量数据库RedisStack+DeepSeek来实现RAG功能。
LLM的缺陷
- LLM的知识不是实时的,不具备知识更新.
- LLM可能不知道你私有的领域/业务知识.
- LLM有时会在回答中生成看似合理但实际上是错误的信息
2.RAG是什么
官网
RAG (Retrieval-Augmented Generation)

LLM 的知识仅限于它所接受的训练数据。如果你想让一个 LLM 了解特定领域的知识或专有数据,你可以
什么是RAG?

幻觉?
- 已读乱回
- 已读不回
- 似是而非
springai中的RAG
https://docs.spring.io/spring-ai/reference/api/retrieval-augmented-generation.html
springai alibaba中的RAG叫做文档检索 (Document Retriever)
https://java2ai.com/docs/1.0.0.2/tutorials/basics/retriever/?spm=5176.29160081.0.0.2856aa5cXggpMJ

3.RAG核心设计理念
RAG技术就像给AI大模型装上了「实时百科大脑」,为了让大模型获取足够的上下文,以便获得更加广泛的信息源,通过先查资料后回答的机制,让AI摆脱传统模型的”知识遗忘和幻觉回复”困境
一句话
类似考试时有不懂的,给你准备了小抄,对大模型知识盲区的一种补充
4.RAG能干嘛
通过引入外部知识源来增强LLM的输出能力,传统的LLM通常基于其训练数据生成响应,但这些数据可能过时或不够全面。RAG允许模型在生成答案之前,从特定的知识库中检索相关信息,从而提供更准确和上下文相关的回答
5.RAG怎么用

RAG流程分为两个不同的阶段:索引和检索




6.开发步骤
需求:
- AI智能运维助手,通过提供的错误编码,给出异常解释辅助运维人员更好的定位问题和维护系统
- SpringAI+阿里百炼嵌入模型text-embedding-v3+向量数据库RedisStack+DeepSeek来实现RAG功能。
建Module
SAA-12RAG4AiOps
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-12RAG4AiOps</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!-- 添加 Redis 向量数据库依赖 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-vector-store-redis</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8012
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-12RAG4AiDatabase
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
spring.ai.dashscope.chat.options.model=deepseek-r1
spring.ai.dashscope.embedding.options.model=text-embedding-v3
# =======Redis Stack==========
spring.data.redis.host=localhost
spring.data.redis.port=6379
spring.data.redis.username=default
spring.data.redis.password=
spring.ai.vectorstore.redis.initialize-schema=true
spring.ai.vectorstore.redis.index-name=atguigu-index
spring.ai.vectorstore.redis.prefix=atguigu-prefix阿里云百炼平台向量大模型 text-embedding-v3

配置参考信息来源和知识出处
https://docs.spring.io/spring-ai/reference/api/vectordbs/redis.html

主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa12Rag4AiOpsApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa12Rag4AiOpsApplication.class, args);
}
}提供ErrorCode脚本让他存入向量数据库RedisStack,形成文档知识库
ops.txt
00000 系统OK正确执行后的返回
A0001 用户端错误一级宏观错误码
A0100 用户注册错误二级宏观错误码
B1111 支付接口超时
C2222 Kafka消息解压严重7.业务类第一版
SpringAI源代码接口 VectorStore

用redis作为向量存储
安装 redis-stack-server
docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server
配置类
配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.rag.advisor.RetrievalAugmentationAdvisor;
import org.springframework.ai.rag.retrieval.search.VectorStoreDocumentRetriever;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-25 18:53
* @Description ChatModel+ChatClient+多模型共存
*/
@Configuration
public class SaaLLMConfig
{
// 模型名称常量定义
private final String DEEPSEEK_MODEL = "deepseek-v3";
private final String QWEN_MODEL = "qwen-plus";
@Bean(name = "deepseek")
public ChatModel deepSeek()
{
return DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder().withModel(DEEPSEEK_MODEL).build()
)
.build();
}
@Bean(name = "qwen")
public ChatModel qwen()
{
return DashScopeChatModel.builder().dashScopeApi(DashScopeApi.builder()
.apiKey(System.getenv("aliQwen-api"))
.build())
.defaultOptions(
DashScopeChatOptions.builder()
.withModel(QWEN_MODEL)
.build()
)
.build();
}
@Bean(name = "deepseekChatClient")
public ChatClient deepseekChatClient(@Qualifier("deepseek") ChatModel deepSeek)
{
return ChatClient.builder(deepSeek)
.defaultOptions(ChatOptions.builder()
.model(DEEPSEEK_MODEL)
.build())
.build();
}
@Bean(name = "qwenChatClient")
public ChatClient qwenChatClient(@Qualifier("qwen") ChatModel qwen)
{
return ChatClient.builder(qwen)
.defaultOptions(ChatOptions.builder()
.model(QWEN_MODEL)
.build())
.build();
}
}InitVectorDatabaseConfig(第一版)
package com.atguigu.study.config;
import cn.hutool.crypto.SecureUtil;
import jakarta.annotation.PostConstruct;
import org.springframework.ai.document.Document;
import org.springframework.ai.reader.TextReader;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.Resource;
import org.springframework.data.redis.core.RedisTemplate;
import java.nio.charset.Charset;
import java.util.List;
/**
* @auther zzyybs@126.com
* @create 2025-07-30 12:16
* @Description TODO
*/
@Configuration
public class InitVectorDatabaseConfig
{
@Autowired
private VectorStore vectorStore;
@Value("classpath:ops.txt")
private Resource sqlFile;
@PostConstruct
public void init()
{
// 1.读取文件
TextReader textReader = new TextReader(sqlFile);
textReader.setCharset(Charset.defaultCharset());
// 2.文件转换成向量(分词)
List<Document> list = new TokenTextSplitter().transform(textReader.read());
// 3.写入向量数据库(Redis),无法去重复版
vectorStore.add(list);
}Controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.rag.advisor.RetrievalAugmentationAdvisor;
import org.springframework.ai.rag.retrieval.search.VectorStoreDocumentRetriever;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-30 12:21
* @Description TODO
*/
@RestController
public class RagController
{
@Resource(name = "qwenChatClient")
private ChatClient chatClient;
@Resource
private VectorStore vectorStore;
/**
* http://localhost:8012/rag4aiops?msg=00000
* http://localhost:8012/rag4aiops?msg=C2222
* @param msg
* @return
*/
@GetMapping("/rag4aiops")
public Flux<String> rag(String msg)
{
String systemInfo = """
你是一个运维工程师,按照给出的编码给出对应故障解释,否则回复找不到信息。
""";
RetrievalAugmentationAdvisor advisor = RetrievalAugmentationAdvisor.builder()
.documentRetriever(
VectorStoreDocumentRetriever.builder()
.vectorStore(vectorStore)
.build()
)
.build();
return chatClient.prompt()
.system(systemInfo)
.user(msg)
.advisors(advisor) // RAG功能,向量数据库查询
.stream()
.content();
}
}测试

其它问题
重启下微服务:重复数据写入问题需考虑,不然每次重启都要新增

8.业务类第二版 向量数据库去重问题解决
使用RedisSetNX去重
RedisConfig
package com.zzyy.study.config;
import lombok.extern.slf4j.Slf4j;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;
/**
* @auther zzyy
* @create 2024-03-07 10:45
*/
@Configuration
@Slf4j
public class RedisConfig
{
/**
* RedisTemplate配置
* redis序列化的工具配置类,下面这个请一定开启配置
* 127.0.0.1:6379> keys *
* 1) "ord:102" 序列化过
* 2) "\xac\xed\x00\x05t\x00\aord:102" 野生,没有序列化过
* this.redisTemplate.opsForValue(); //提供了操作string类型的所有方法
* this.redisTemplate.opsForList(); // 提供了操作list类型的所有方法
* this.redisTemplate.opsForSet(); //提供了操作set的所有方法
* this.redisTemplate.opsForHash(); //提供了操作hash表的所有方法
* this.redisTemplate.opsForZSet(); //提供了操作zset的所有方法
* @param redisConnectionFactor
* @return
*/
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactor)
{
RedisTemplate<String,Object> redisTemplate = new RedisTemplate<>();
redisTemplate.setConnectionFactory(redisConnectionFactor);
//设置key序列化方式string
redisTemplate.setKeySerializer(new StringRedisSerializer());
//设置value的序列化方式json,使用GenericJackson2JsonRedisSerializer替换默认序列化
redisTemplate.setValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.setHashKeySerializer(new StringRedisSerializer());
redisTemplate.setHashValueSerializer(new GenericJackson2JsonRedisSerializer());
redisTemplate.afterPropertiesSet();
return redisTemplate;
}
}InitVectorDatabaseConfig(第二版)
package com.atguigu.study.config;
import cn.hutool.crypto.SecureUtil;
import jakarta.annotation.PostConstruct;
import org.springframework.ai.document.Document;
import org.springframework.ai.reader.TextReader;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.vectorstore.AbstractVectorStoreBuilder;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.Resource;
import org.springframework.data.redis.core.RedisTemplate;
import java.nio.charset.Charset;
import java.util.List;
/**
* @auther zzyybs@126.com
* @create 2025-07-30 12:16
* @Description TODO
*/
@Configuration
public class InitVectorDatabaseConfig
{
@Autowired
private VectorStore vectorStore;
@Autowired
private RedisTemplate<String,String> redisTemplate;
@Value("classpath:ops.txt")
private Resource opsFile;
@PostConstruct
public void init()
{
//1 读取文件
TextReader textReader = new TextReader(opsFile);
textReader.setCharset(Charset.defaultCharset());
//2 文件转换为向量(开启分词)
List<Document> list = new TokenTextSplitter().transform(textReader.read());
//3 写入向量数据库RedisStack
//vectorStore.add(list);
// 解决上面第3步,向量数据重复问题,使用redis setnx命令处理
//4 去重复版本
String sourceMetadata = (String)textReader.getCustomMetadata().get("source");
String textHash = SecureUtil.md5(sourceMetadata);
String redisKey = "vector-xxx:" + textHash;
// 判断是否存入过,redisKey如果可以成功插入表示以前没有过,可以假如向量数据
Boolean retFlag = redisTemplate.opsForValue().setIfAbsent(redisKey, "1");
System.out.println("****retFlag : "+retFlag);
if(Boolean.TRUE.equals(retFlag))
{
//键不存在,首次插入,可以保存进向量数据库
vectorStore.add(list);
}else {
//键已存在,跳过或者报错
//throw new RuntimeException("---重复操作");
System.out.println("------向量初始化数据已经加载过,请不要重复操作");
}
}
}优点:性能高+线程安全问题OK
controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.rag.advisor.RetrievalAugmentationAdvisor;
import org.springframework.ai.rag.retrieval.search.VectorStoreDocumentRetriever;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-30 12:21
* @Description TODO
*/
@RestController
public class RagController
{
@Resource(name = "qwenChatClient")
private ChatClient chatClient;
@Resource
private VectorStore vectorStore;
/**
* http://localhost:8012/rag4aiops?msg=00000
* http://localhost:8012/rag4aiops?msg=C2222
* @param msg
* @return
*/
@GetMapping("/rag4aiops")
public Flux<String> rag(String msg)
{
String systemInfo = """
你是一个运维工程师,按照给出的编码给出对应故障解释,否则回复找不到信息。
""";
RetrievalAugmentationAdvisor advisor = RetrievalAugmentationAdvisor.builder()
.documentRetriever(
VectorStoreDocumentRetriever.builder()
.vectorStore(vectorStore)
.build()
)
.build();
return chatClient.prompt()
.system(systemInfo)
.user(msg)
.advisors(advisor) // RAG功能,向量数据库查询
.stream()
.content();
}
}14.Tool Calling工具调用
1.为什么需要工具调用?

2.工具调用是什么
官网
SpringAI
https://docs.spring.io/spring-ai/reference/api/tools.html
SpringAI Alibba

https://java2ai.com/docs/1.0.0.2/tutorials/basics/tool-calling/?spm=5176.29160081.0.0.2856aa5cgvn0gm
一句话:LLM的外部utils工具类
重要提示:
- ToolCalling(也称为FunctionCalling)它允许大模型与一组API或工具进行交互,将 LLM 的智能与外部工具或 API无缝连接,从而增强大模型其功能。
- LLM本身并不执行函数,它只是指示应该调用哪个函数以及如何调用
3.工具调用能干嘛
- 1.访问实时数据
- 2.执行某种工具类/辅助类操作:大语言模型(LLMs)不仅仅是文本生成的能手,它们还能触发并调用第3方函数,比如发邮件/查询微信/调用支付宝/查看顺丰快递单据号等等……
4.工具调用怎么用
工作流程

5.开发步骤
新建子模块Module
SAA-13ToolCalling
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-13ToolCalling</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8013
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-13ToolCalling
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa13ToolCallingApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa13ToolCallingApplication.class, args);
}
}6.业务类
1.先不使用ToolCalling
没有配置类LLMConfig
controller
package com.atguigu.study.controller;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:26
* @Description TODO
*/
@RestController
public class NoToolCallingController
{
@Resource
private ChatModel chatModel;
@GetMapping("/notoolcall/chat")
public Flux<String> chat(@RequestParam(name = "msg",defaultValue = "你是谁现在几点") String msg)
{
return chatModel.stream(msg);
}
}
2.投入使用ToolCalling
方式1通过ChatModel实现
没有配置类LLMConfig
新建Tool工具类,类似Utils工具类
package com.atguigu.study.utils;
import org.springframework.ai.tool.annotation.Tool;
import java.time.LocalDateTime;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:39
* @Description TODO
*/
public class DateTimeTools
{
/**
* 1.定义 function call(tool call)
* 2. returnDirect
* true = tool直接返回不走大模型,直接给客户
* false = 拿到tool返回的结果,给大模型,最后由大模型回复
*/
@Tool(description = "获取当前时间", returnDirect = false)
public String getCurrentTime()
{
return LocalDateTime.now().toString();
}
}工具调用直接返回

package com.atguigu.study.controller;
import com.atguigu.study.utils.DateTimeTools;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.model.tool.ToolCallingChatOptions;
import org.springframework.ai.support.ToolCallbacks;
import org.springframework.ai.tool.ToolCallback;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:40
* @Description TODO
*/
@RestController
public class ToolCallingController
{
@Resource
private ChatModel chatModel;
@GetMapping("/toolcall/chat")
public String chat(@RequestParam(name = "msg",defaultValue = "你是谁,现在几点了") String msg)
{
// 1.工具注册到工具集合里
ToolCallback[] tools = ToolCallbacks.from(new DateTimeTools());
// 2.将工具集配置进ChatOptions对象
ChatOptions options = ToolCallingChatOptions.builder().toolCallbacks(tools).build();
// 3.构建提示词
Prompt prompt = new Prompt(msg, options);
// 4.调用大模型
return chatModel.call(prompt).getResult().getOutput().getText();
}
}http://localhost:8013/toolcall/chat后就能查看当前时间了
方式2通过ChatClient实现

复习一下:它本身不会自动装配,直接定义无法使用,需要ChatModel套层壳
配置类LLMConfig
package com.atguigu.study.config;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:47
* @Description TODO
*/
@Configuration
public class SaaLLMConfig
{
@Bean
public ChatClient chatClient(ChatModel chatModel)
{
return ChatClient.builder(chatModel).build();
}
}
Controller
package com.atguigu.study.controller;
import com.atguigu.study.utils.DateTimeTools;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.model.tool.ToolCallingChatOptions;
import org.springframework.ai.support.ToolCallbacks;
import org.springframework.ai.tool.ToolCallback;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:40
* @Description TODO
*/
@RestController
public class ToolCallingController
{
@Resource
private ChatModel chatModel;
@Resource
private ChatClient chatClient;
@GetMapping("/toolcall/chat")
public String chat(@RequestParam(name = "msg",defaultValue = "你是谁现在几点") String msg)
{
// 1.工具注册到工具集合里
ToolCallback[] tools = ToolCallbacks.from(new DateTimeTools());
// 2.将工具集配置进ChatOptions对象
ChatOptions options = ToolCallingChatOptions.builder().toolCallbacks(tools).build();
// 3.构建提示词
Prompt prompt = new Prompt(msg, options);
// 4.调用大模型
return chatModel.call(prompt).getResult().getOutput().getText();
}
@GetMapping("/toolcall/chat2")
public Flux<String> chat2(@RequestParam(name = "msg",defaultValue = "你是谁现在几点") String msg)
{
return chatClient.prompt(msg)
.tools(new DateTimeTools())
.stream()
.content();
}
}测试

关于工具调用直接返回
ture:大模型直接返回原始未处理的数据
flase:大模型会再对原始数据处理一次,返回我们熟知的格式

3.小总结
- 新建定义一个Tool工具类
- ChatModel/ChatClient使用
- Tool Calling使用注意事项:ToolCalling使用的前提是大模型支持functioncall才能正常调用。
15.MCP模型上下文协议(Model Context Protocol)
1.为什么会有MCP出现,之前痛点是什么

之前每个大模型(如DeepSeek、ChatGPT)需要为每个工具单独开发接口(FunctionCalling),导致重复劳动
痛点
- 共用
- 数量
2.MCP入门概念
MCP自身协议官网

https://modelcontextprotocol.io/introduction
SpringAI官网支持MCP
https://docs.spring.io/spring-ai/reference/api/mcp/mcp-overview.html
SpringAI Aibaba官网支持MCP
MCP是什么
一句话:Java界的SpringCloud Openfeign,只不过Openfeign是用于微服务通讯的,
而MCP用于大模型通讯的,但它们都是为了通讯获取某项数据的一种机制
MCP能干嘛
提供了一种标准化的方式来连接 LLMs 需要的上下文,MCP 就类似于一个 Agent 时代的 Type-C协议,希望能将不同来源的数据、工具、服务统一起来供大模型调用


MCP 厉害的地方在于,不用重复造轮子。
过去每个软件(比如微信、Excel)都要单独给 AI 做接口,
现在 MCP 统一了标准,就像所有电器都用 USB-C 充电口,AI 一个接口就能连接所有工具
MCP怎么玩

3.MCP架构知识
MCP遵循客户端-服务器架构包含以下几个核心部分

- MCP 主机(MCP Hosts):发起请求的 AI 应用程序,比如聊天机器人、AI 驱动的 IDE 等
- MCP 客户端(MCP Clients):在主机程序内部,与 MCP 服务器保持 1:1 的连接。
- MCP 服务器(MCP Servers):为 MCP 客户端提供上下文、工具和提示信息。
- 本地资源(Local Resources):本地计算机中可供 MCP 服务器安全访问的资源,如文件、数据库。
- 远程资源(Remote Resources):MCP 服务器可以连接到的远程资源,如通过 API 提供的数据
在MCP通信协议中,一般有两种模式
- STDIO(标准输入/输出)
- 支持标准输入和输出流进行通信,主要用于本地集成、命令行工具等场景
- SSE (Server-Sent Events)
- 支持使用 HTTP POST 请求进行服务器到客户端流式处理,以实现客户端到服务器的通信

4.小总结(快速分清楚 工具调用、检索增强生成、模型上下文协议)
ToolCalling 工具类,为了让大模型使用Util工具
RAG 知识库,为了让大模型获取足够的上下文
MCP 协议,为了让大模型之间的相互调用



MCP VS ToolCalling
- 之前每个大模型(如DeepSeek、ChatGPT)需要为每个工具单独开发接口(FunctionCalling),导致重复劳动
- MCP通过统一协议
- 开发者只需写一次MCP服务端,所有兼容MCP协议的模型都能调用,MCP让大模型从”被动应答”变为”主动调用工具”
- 我调用一个MCP服务器就等价调用一个带有多个功能的Utils工具类,自己还不用受累携带
5.本地MCP-开发步骤
1.MCP-Server服务端实现
- 新建子模块Module
SAA-14LocalMcpServer
- 改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-14LocalMcpServer</artifactId>
<dependencies>
<!--注意事项(重要)
spring-ai-starter-mcp-server-webflux不能和<artifactId>spring-boot-starter-web</artifactId>依赖并存,
否则会使用tomcat启动,而不是netty启动,从而导致mcpserver启动失败,但程序运行是正常的,mcp客户端连接不上。
-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<!--mcp-server-webflux-->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-mcp-server-webflux</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8014
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-14LocalMcpServer
# ====mcp-server Config=============
spring.ai.mcp.server.type=async
spring.ai.mcp.server.name=customer-define-mcp-server
spring.ai.mcp.server.version=1.0.0主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa14LocalMcpServerApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa14LocalMcpServerApplication.class, args);
}
}业务类
天气预报WeatherService服务类
package com.atguigu.study.service;
import org.springframework.ai.tool.annotation.Tool;
import org.springframework.stereotype.Service;
import java.util.Map;
/**
* @auther bs@126.com
* @create 2025-07-31 21:07
* @Description TODO
*/
@Service
public class WeatherService
{
@Tool(description = "根据城市名称获取天气预报")
public String getWeatherByCity(String city)
{
Map<String, String> map = Map.of(
"北京", "11111降雨频繁,其中今天和后天雨势较强,部分地区有暴雨并伴强对流天气,需注意",
"上海", "22222多云,15℃~27℃,南风3级,当前温度27℃。",
"深圳", "333333多云40天,阴16天,雨30天,晴3天"
);
return map.getOrDefault(city, "抱歉:未查询到对应城市!");
}
}ToolCallbackProvider接口配置类
package com.atguigu.study.config;
import com.atguigu.study.service.WeatherService;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.ai.tool.method.MethodToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 21:08
* @Description TODO
*/
@Configuration
public class McpServerConfig
{
/**
* 将工具方法暴露给外部 mcp client 调用
* @param weatherService
* @return
*/
@Bean
public ToolCallbackProvider weatherTools(WeatherService weatherService)
{
return MethodToolCallbackProvider.builder()
.toolObjects(weatherService)
.build();
}
}自启动作为服务端等待调用即可

2.MCP-Client客户端实现
新建子模块Module
SAA-15LocalMcpClient
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-15LocalMcpClient</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!-- 2.mcp-clent 依赖 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-mcp-client</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8015
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-15LocalMcpClient
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
# ====mcp-client Config=============
spring.ai.mcp.client.type=async
spring.ai.mcp.client.request-timeout=60s
spring.ai.mcp.client.toolcallback.enabled=true
spring.ai.mcp.client.sse.connections.mcp-server1.url=http://localhost:8014主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa15LocalMcpClientApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa15LocalMcpClientApplication.class, args);
}
}业务类
LLMConfig并添加tool调用
package com.atguigu.study.config;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:47
* @Description TODO
*/
@Configuration
public class SaaLLMConfig
{
@Bean
public ChatClient chatClient(ChatModel chatModel, ToolCallbackProvider tools)
{
return ChatClient.builder(chatModel)
.defaultToolCallbacks(tools.getToolCallbacks()) //mcp协议,配置见yml文件
.build();
}
}controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 21:14
* @Description TODO
*/
@RestController
public class McpClientController
{
@Resource
private ChatClient chatClient;//使用mcp支持
@Resource
private ChatModel chatModel;//没有纳入tool支持,普通调用
// http://localhost:8015/mcpclient/chat?msg=上海
@GetMapping("/mcpclient/chat")
public Flux<String> chat(@RequestParam(name = "msg",defaultValue = "北京") String msg)
{
System.out.println("使用了mcp");
return chatClient.prompt(msg).stream().content();
}
@RequestMapping("/mcpclient/chat2")
public Flux<String> chat2(@RequestParam(name = "msg",defaultValue = "北京") String msg)
{
System.out.println("未使用mcp");
return chatModel.stream(msg);
}
}3.MCP-Client invoke MCP-Server测试
使用mcp

没有mcp支持,已读乱回

6.远程MCP增强案例-对接互联网通用MCP服务(百度地图)
对接互联网通用MCP服务(百度地图)
https://mcp.so/zh/server/baidu-map/baidu-maps
1.环境配置
- 下载最新版的NodeJS
- 注册百度地图账号+申请API-key :速成langchain4j时我们配置过这里省略
- nodejs配置编码-Typescript接入

2.开发步骤
新建子模块Module
springAI-16chat-mcpclient-call-baidumcp
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.zzyy.study</groupId>
<artifactId>SpringAI-zyfanV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>springAI-16chat-mcpclient-call-baidumcp</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- 1.大模型依赖 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>
<!-- 2.mcp-clent 依赖 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-mcp-client</artifactId>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
</project>写YML
server.port=6016
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=springAI-16chat-mcpclient-call-baidumcp
# ====LLM Config=============
spring.ai.openai.api-key=${aliQwen-api}
spring.ai.openai.base-url=https://dashscope.aliyuncs.com/compatible-mode
spring.ai.openai.chat.options.model=qwen-plus
# ====mcp-client Config=============
spring.ai.mcp.client.toolcallback.enabled=true
spring.ai.mcp.client.stdio.servers-configuration=classpath:/mcp-server.jsonnodejs配置编码-Typescript接入
https://mcp.so/zh/server/baidu-map/baidu-maps?tab=content#typescript%E6%8E%A5%E5%85%A5
mcp-server.json

主启动

业务类
LLMConfig
package com.atguigu.study.config;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @auther zzyybs@126.com
* @create 2025-07-31 20:47
* @Description TODO
*/
@Configuration
public class SaaLLMConfig
{
@Bean
public ChatClient chatClient(ChatModel chatModel, ToolCallbackProvider tools)
{
return ChatClient.builder(chatModel)
//mcp协议,配置见yml文件,此处只赋能给ChatClient对象
.defaultToolCallbacks(tools.getToolCallbacks())
.build();
}
}controller
package com.zzyy.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyy
* @create 2025-07-19 18:55
*/
@RestController
public class McpClientCallBaiDuMcpController
{
@Resource
private ChatClient chatClient; //添加了MCP调用能力
@Resource
private ChatModel chatModel; //没有添加MCP调用能力
/**
* 添加了MCP调用能力
* http://localhost:6016/mcp/chat?msg=查询北京天气
* http://localhost:6016/mcp/chat?msg=查询61.149.121.66归属地
* http://localhost:6016/mcp/chat?msg=查询昌平到天安门路线规划
*
*
* @param msg
* @return
*/
@GetMapping("/mcp/chat")
public Flux<String> chat(String msg)
{
return chatClient.prompt(msg).stream().content();
}
/**
* 没有添加MCP调用能力
*http://localhost:6016/mcp/chat2?msg=查询北京天气
* @param msg
* @return
*/
@RequestMapping("/mcp/chat2")
public Flux<String> chat2(String msg)
{
return chatModel.stream(msg);
}
}3.测试
具备mcp能力的

不具备mcp能力的

7.MCP原理+源码分析
源码获得

下载后的源码

原理说明

16.SAA生态篇
1.阿里云百炼平台云上RAG知识库(AI智能运维)
需求说明
阿里云上知识库搭建


开发步骤
新建子模块Module
SAA-17BailianRAG
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.atguigu.study</groupId>
<artifactId>SpringAIAlibaba-atguiguV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>SAA-17BailianRAG</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--spring-ai-alibaba dashscope-->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>写YML
server.port=8017
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-17BailianRAG
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa17BailianRagApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa17BailianRagApplication.class, args);
}
}业务类
DashScopeConfig
package com.zzyy.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DashScopeConfig {
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;
@Bean
public DashScopeApi dashScopeApi()
{
return DashScopeApi.builder()
.apiKey(apiKey)
.workSpaceId("llm-3as714s6flm80yc1")
.build();
}
@Bean
public ChatClient chatClient(ChatModel dashscopeChatModel)
{
return ChatClient.builder(dashscopeChatModel).build();
}
}controller
package com.zzyy.study.controller;
import com.alibaba.cloud.ai.advisor.DocumentRetrievalAdvisor;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.rag.DashScopeDocumentRetriever;
import com.alibaba.cloud.ai.dashscope.rag.DashScopeDocumentRetrieverOptions;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.rag.retrieval.search.DocumentRetriever;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-08-01 16:51
* @Description TODO
*/
@RestController
public class BailianRagController
{
@Resource
private ChatClient chatClient;
@Resource
private DashScopeApi dashScopeApi;
/**
* http://localhost:6018/bailian/rag/chat
* http://localhost:6018/bailian/rag/chat?msg=A0001
* @param msg
* @return
*/
@GetMapping("/bailian/rag/chat")
public Flux<String> chat(@RequestParam(name = "msg",defaultValue = "00000错误信息") String msg)
{
//1 RetrieverOptions参数配置
DashScopeDocumentRetrieverOptions documentRetrieverOptions = DashScopeDocumentRetrieverOptions.builder()
.withIndexName("myerror") // 知识库名称
.build();
//2 百炼平台RAG知识库构建器
DocumentRetriever retriever = new DashScopeDocumentRetriever(dashScopeApi,documentRetrieverOptions);
return chatClient.prompt()
.user(msg)
.advisors(new DocumentRetrievalAdvisor(retriever))
.stream()
.content();
}
}测试:

2.阿里云百炼平台云上RAG知识库(电商智能客服案例)
需求说明
阿里云上知识库搭建RAG,电商客服统一话术
开发步骤
新建子模块Module
springAI-21chat-CustomerService
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.zzyy.study</groupId>
<artifactId>SpringAI-zyfanV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>springAI-21chat-CustomerService</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- 2. SAA大模型依赖 -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
<version>1.0.0.2</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
</project>写YML
server.port=6021
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=springAI-21chat-CustomerService
# ====LLM Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.zzyy.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringAi21chatCustomerServiceApplication
{
public static void main(String[] args)
{
SpringApplication.run(SpringAi21chatCustomerServiceApplication.class, args);
}
}业务类
DashSocpeConfig
package com.zzyy.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DashSocpeConfig {
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;
@Bean
public DashScopeApi dashScopeApi() {
return DashScopeApi.builder()
.apiKey(apiKey)
.workSpaceId("llm-3as714s6flm80yc1")
.build();
}
@Bean
public ChatClient chatClient(ChatModel dashscopeChatModel) {
return ChatClient.builder(dashscopeChatModel).build();
}
}controller
package com.zzyy.study.controller;
import com.alibaba.cloud.ai.advisor.DocumentRetrievalAdvisor;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.rag.DashScopeDocumentRetriever;
import com.alibaba.cloud.ai.dashscope.rag.DashScopeDocumentRetrieverOptions;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.rag.retrieval.search.DocumentRetriever;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-08-01 16:51
* @Description TODO
*/
@RestController
public class AICustomerServiceController
{
@Resource
private ChatClient chatClient;
@Resource
private DashScopeApi dashScopeApi;
/**
* http://localhost:6021/customer/service
* http://localhost:6021/customer/service?msg=A0001
* @param msg
* @return
*/
@GetMapping("/customer/service")
public Flux<String> service(@RequestParam(name = "msg",defaultValue = "什么时候发货") String msg)
{
//1 RetrieverOptions参数配置
DashScopeDocumentRetrieverOptions documentRetrieverOptions = DashScopeDocumentRetrieverOptions.builder()
.withIndexName("淘宝电商话术")// 百炼平台云知识库名称
.build();
//2 百炼平台RAG知识库构建器
DocumentRetriever retriever = new DashScopeDocumentRetriever(dashScopeApi,documentRetrieverOptions);
return chatClient.prompt()
.system("你是一个电商智能客服助手,根据用户的问题去知识库查询信息," +
"如果知识库查询不到信息,返回抱歉查询不到任何信息。")
.user(msg)
.advisors(new DocumentRetrievalAdvisor(retriever))
.stream()
.content();
}
}3.本地微服务调用阿里云百炼平台工作流(AI智能菜单,今天吃什么)
美团,今天吃什么AI智能菜单
1.不用阿里SAA生态
开发步骤
新建子模块Module
SAA-18TodayMenu
改POM
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.zzyy.study</groupId>
<artifactId>SpringAI-zyfanV1</artifactId>
<version>1.0-SNAPSHOT</version>
</parent>
<artifactId>springAI-20chat-TodayMenu</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- 2. SAA大模型依赖 -->
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
<version>1.0.0.2</version>
</dependency>
<!--hutool-->
<dependency>
<groupId>cn.hutool</groupId>
<artifactId>hutool-all</artifactId>
<version>5.8.22</version>
</dependency>
<!--lombok-->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.38</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
<source>21</source>
<target>21</target>
</configuration>
</plugin>
</plugins>
</build>
</project>写YML
server.port=8018
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=SAA-18TodayMenu
# ====SpringAIAlibaba Config=============
spring.ai.dashscope.api-key=${aliQwen-api}主启动
package com.atguigu.study;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class Saa18TodayMenuApplication
{
public static void main(String[] args)
{
SpringApplication.run(Saa18TodayMenuApplication.class, args);
}
}业务类
配置类LLMConfig
package com.atguigu.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DashScopeConfig
{
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;
@Bean
public DashScopeApi dashScopeApi() {
return DashScopeApi.builder()
.apiKey(apiKey)
.build();
}
@Bean
public ChatClient chatClient(ChatModel dashscopeChatModel) {
return ChatClient.builder(dashscopeChatModel).build();
}
}controller
package com.atguigu.study.controller;
import jakarta.annotation.Resource;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
/**
* @auther zzyybs@126.com
* @create 2025-09-11 19:00
* @Description TODO
*/
@RestController
public class MenuController
{
@Resource
private ChatModel chatModel;
@GetMapping(value = "/eat")
public Flux<String> eat(@RequestParam(name = "msg",defaultValue = "今天吃什么") String question)
{
String info = """
你是一个AI厨师助手,每次随机生成三个家常菜,并且提供这些家常菜的详细做法步骤,以HTML格式返回
字数控制在1500字以内。
""";
// 系统消息
SystemMessage systemMessage = new SystemMessage(info);
// 用户消息
UserMessage userMessage = new UserMessage(question);
Prompt prompt = new Prompt(userMessage, systemMessage);
return chatModel.stream(prompt).map(response -> response.getResults().get(0).getOutput().getText());
}
}测试

2.使用阿里SAA生态 -重点
工作流配置

写YML
server.port=6020
# 设置全局编码格式
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
server.servlet.encoding.charset=UTF-8
spring.application.name=springAI-20chat-TodayMenu
# ====LLM Config=============
spring.ai.dashscope.api-key=${aliQwen-api}
# SAA PlatForm today's menu Agent app-id
spring.ai.dashscope.agent.options.app-id=f0a4613e6bd540c5bcd55e137e3b0e35业务类
配置类LLMConfig
package com.zzyy.study.config;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class DashScopeConfig
{
@Value("${spring.ai.dashscope.api-key}")
private String apiKey;
@Bean
public DashScopeApi dashScopeApi() {
return DashScopeApi.builder()
.apiKey(apiKey)
.build();
}
@Bean
public ChatClient chatClient(ChatModel dashscopeChatModel) {
return ChatClient.builder(dashscopeChatModel).build();
}
}controller
package com.zzyy.study.controller;
import com.alibaba.cloud.ai.dashscope.agent.DashScopeAgent;
import com.alibaba.cloud.ai.dashscope.agent.DashScopeAgentOptions;
import com.alibaba.cloud.ai.dashscope.api.DashScopeAgentApi;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @auther zzyybs@126.com
* @create 2025-08-13 19:01
* @Description TODO
*/
@RestController
public class MenuCallAgentController
{
// 百炼平台的appid
@Value("${spring.ai.dashscope.agent.options.app-id}")
private String APPID;
// 百炼云端智能体调用对象
private DashScopeAgent agent;
//构造方法注入,创建百炼云端智能体对象
public MenuCallAgentController(DashScopeAgentApi agentApi)
{
this.agent = new DashScopeAgent(agentApi);
}
/**
* http://localhost:8018/eatAgent
* @param topic
* @return
*/
@GetMapping("/eatAgent")
public String eatAgent(@RequestParam(name = "topic",defaultValue = "今天中午吃什么") String topic)
{
DashScopeAgentOptions options = DashScopeAgentOptions.builder().withAppId(APPID).build();
Prompt prompt = new Prompt(topic, options);
return agent.call(prompt).getResult().getOutput().getText();
}
}测试:

4.智能体
是什么
“智能体”是从对话工具进化为数字助手,能像人类助理一样完成端到端的复杂任务,核心突破在于主动性和环境操作能力
智能体(Agent)指的是一种应用,它依靠大模型进行自主决策,在与用户进行自然语言交互的时候,根据用户问题能够自主感知环境、做出决策并执行行动的系统。它不仅仅是被动回答问题,而是像“有自主意识的程序”,能主动完成复杂任务
举个例子
- 普通大模型
- 问题提问调用:你问“上海明天天气如何?”它返回一段文字描述。
- 智能体
- 你说“如果明天下雨,提醒我带伞,并取消明天的户外会议。”它会查询天气→设定提醒→检查日历→发送会议取消邮件。
能干嘛
典型应用场景
- 自动化办公:智能体读取邮件、生成报告、安排会议。
- 智能家居:根据你的作息自动调节灯光、空调,甚至订购物资。
- 复杂问题解决:如“帮我用1万元预算策划一场50人的公司团建”,它会拆解需求、搜索场地、比价、生成方案
怎么用
阿里云百炼平台
https://bailian.console.aliyun.com










